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Abstract

The attribute-oriented induction (AOI for short) method is one of the most important data mining methods. The

input of the AOI method contains a relational table and a concept tree (con\cept hierarchy) for each attribute, and

the output is a small relation summarizing the general characteristics of the task-relevant data. Although AOI is very

useful for inducing general characteristics, it has the limitation that it can only be applied to relational data, where there

is no order among the data items. If the data are ordered, the existing AOI methods are unable to find the generalized

knowledge. In view of this weakness, this paper proposes a dynamic programming algorithm, based on AOI techniques,

to find generalized knowledge from an ordered list of data. By using the algorithm, we can discover a sequence of K

generalized tuples describing the general characteristics of different segments of data along the list, where K is a param-

eter specified by users.
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Keywords: Attribute-oriented induction; Concept hierarchy; Data mining; Relational data; Ordered data; Dynamic programming
1. Introduction

Data mining extracts implicit, previously unknown and potentially useful information from databases.

Many approaches have been proposed to extract information. According to the classification scheme pro-

posed in recent surveys (Chen et al., 1996; Han and Kamber, 2001), one of the most important ones is the

attribute-oriented induction (AOI) method. This approach was first introduced in Cai et al. (1990), Han et

al. (1992), Han et al. (1993).
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The AOI method was developed for knowledge discovery in relational databases. The input of the

method includes a relation table and a set of concept trees (concept hierarchies) associated with the attri-

butes (columns) of the table. The table stores the task-relevant data, and the concept trees represent the

background knowledge. The core of the AOI method is on-line data generalization, which is performed

by first examining the data distribution for each attribute in the set of relevant data, calculating the corre-
sponding abstraction level that the data in each attribute should be generalized to, and then replacing each

data tuple with its corresponding generalized tuple. The major generalization techniques used in the process

include attribute-removal, concept-tree climbing, attribute-threshold control, propagation of counts and

other aggregate values, etc. Finally, the generalized data is expressed in the form of a generalized relation

from which many kinds of rules can be discovered, such as characteristic rules and discrimination rules. For

more details, please refer to the original papers (Cai et al., 1990; Han et al., 1992; Han et al., 1993).

Undoubtedly, the AOI method has achieved a great success. Because of its success, extensions have been

proposed in the following directions: (1) extensions and applications based on the basic AOI approach
(Han et al., 1993; Han et al., 1998; Lu et al., 1993), (2) more efficient methods of AOI (Carter and Ham-

ilton, 1995; Carter and Hamilton, 1998; Cheung et al., 2000), (3) more general background knowledge

(Hamilton et al., 1996; McClean et al., 2000), (4) integrating AOI with other information reduction meth-

ods (Hu and Cercone, 1996; Shan et al., 1995) and (5) proposing new variants of generalized rules (Tsumo-

to, 2000).

Existing research on AOI is based on set-oriented operations. Thus, current AOI-based methods can

only find generalized knowledge from a set of relational data, where there is no order among the data.

If the data are ordered, current methods are not able to find any ordered generalized knowledge. Unfortu-
nately, ordered data frequently occurs in practice. Possible examples include a list of universities ordered

according to their national rankings, a list of students arranged according to their GPAs, a list of mutual

funds sorted in terms of their total returns and a list of salespersons sorted according to their sales figures.

In all these examples, it will be very helpful for decision makers if we can identify the characteristics of dif-

ferent segments of data along the list. For example, if the data is concerned with salespeople, then we can

identify what characteristics commonly occur in the best sellers, and what characteristics are commonly

seen in the poor sellers. Such characteristics can be used not only to determine the criteria we should

use when recruiting new employees but also the way we should educate and train the current sellers. When
the data is about students, we can foresee what kinds of students will possibly have good GPAs� in the fu-
ture, and therefore we can actively look for students who have this potential. When the data concern mu-

tual funds for a year, we can describe which kinds of mutual funds are more competitive and profitable and

which are not. With this information, the mutual fund company can adjust the investment portfolio, strat-

egy, managers and analysts. As for the customers, they can use this information to choose promising invest-

ment funds.

To induce the characteristics of different segments of data along the list, say K segments, two steps are

performed. First, we partition the data into K consecutive segments. Next, we find the characteristics of the
data in each segment by using the generalization techniques developed by AOI. Of these two steps, the sec-

ond one can be performed easily by generalizing the data in the same segment into a generalized tuple

through concept-tree climbing. On the other hand, the first job is more difficult to do, because there are

Cn
K possible ways we can partition the data, where n is the total number of data. Faced with so many pos-

sible choices, we require an efficient method of determining the best partition that produces K generalized

ordered tuples. To this end, we first define a distance metric to measure the distance between generalized

tuples, and then we propose a dynamic-programming algorithm to find the minimum distance partition

as well as the corresponding K generalized ordered tuples.
In short, the contribution of this paper is twofold. First, AOI methods are extended to deal with ordered

data, because preciously AOI methods could only deal with relational data, which seriously restricted their

applicability. With the proposed method, we can discover a sequence of K generalized tuples describing the
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characteristics of different segments of data along the list. Second, this paper gives a way to formally define

the distance between generalized tuples. This opens a new direction for future AOI research.

This paper is organized as follows. In Section 2, we will use an example to explain the traditional AOI

algorithm. In the same section, we also define our problem and explain the differences between our problem

and the traditional AOI problem. In Section 3, the algorithm consisting of five phases is introduced, and its
time and space complexities are given. Next, we deal with some potential problems that we may encounter

when applying the proposed algorithm to real data sets. Four problems are identified. To remedy these four

problems, three extensions of the algorithm are proposed in Section 4. The results of our performance eval-

uation are given in Section 5. Finally, the conclusions are given in Section 6.
2. The AOI algorithm and problem definition

AOI takes as input a database relation and a concept hierarchy for each attribute. A concept hierarchy is

a tree structure that forms a taxonomy of concepts ranging from a single, most general concept at the root

to some representation of all attribute values at the leaves. Higher level concepts are formed by grouping

related values together and representing these by a single symbol. Concept trees may be defined for either

discrete or continuous valued attributes. A leaf concept for a continuous attribute is expressed as a range of

values. In Appendix A, four example concept trees are shown.

An AOI generalization task is initiated when a user specifies a relation to be retrieved and a set of con-

cept trees to use in generalizing the data. First, the data values are converted to leaf concepts from the
appropriate concept trees. The relation is then generalized by replacing leaf concepts with more general

concepts. As concepts are generalized, the number of distinct concepts of each attribute is reduced, and

many tuples become redundant as the information they contain becomes identical to other tuples. These

are eliminated by removing all but one of the identical tuples. The number of original tuples associated with

each remaining tuple is tracked in the tuple�s count field. The generalization process is limited by two
thresholds: the attribute threshold and the table threshold. The attribute threshold specifies the maximum

number of distinct values of any attribute that may exist after generalization, and the table threshold gives

an upper bound on the number of the generalized tuples that remain after the generalization process. When
the input relation has been generalized to such an extent, generalization ceases. The result is a small set of

tuples that displays the general characteristics of the input relation.

Throughout the paper, we use the sample table shown in Table 1 in our examples. It has 10 tuples and 4

attributes. In addition, we use SI(i, r) to denote the value of attribute r of data tuple i. All concept hierar-

chies are shown in Appendix A. Suppose we set the attribute threshold as 2 and view the data in Table 1 as
Table 1

A sample table of 10 tuples and 4 attributes

SI(i, r) Light Vehicle Model Location of Manufacturer Engine Displacement Price

1 Compact SUV Honda 2000 19,800

2 Midsize SUV Mazda 2200 24,000

3 Fullsize Van Chevrolet 4200 56,000

4 Compact Van Chevrolet 3200 45,600

5 Compact Car Volkswagen 1810 25,100

6 Midsize Car Volkswagen 2300 30,500

7 Midsize Car BMW 3000 32,000

8 Compact SUV Nissan 2190 22,300

9 Compact SUV Toyota 2000 19,800

10 Midsize SUV Toyota 2799 24,500



Table 2

After generalizing the sample data with AOI

SO(i, r) Light Vehicle Model Location of Manufacturer Engine Displacement Price Count

1 Light truck Any Middle Low price 5

2 Light truck Any High High price 2

3 Car Any Middle High price 3
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unordered. Then the result after applying the AOI method to Table 1 is Table 2, where SO(i, r) denotes the

generalized value of attribute r of tuple i. The first generalized tuple in Table 2 comes from tuples 1, 2, 8, 9

and 10 in Table 1, the second from tuples 3 and 4 and the third from tuples 5, 6 and 7.

Now, we describe our problem, the generalization from ordered data problem. The input parameters of

our problem are similar to those of the AOI method, but we assume that the input table has been sorted

according to some criteria specified by a decision maker. For example, suppose we are given the sales data

of a company in the last five years ordered by date. We are required to generalize the data while keeping it

ordered by date.
Besides the difference mentioned above, another difference is that instead of the attribute and table

thresholds, we requires the number of partitions K and two parameters a and b for weighting (the purpose
of these two parameters is explained in the next section). The knowledge we want to discover is the char-

acteristics of different segments of the data along the list.

If we apply our algorithm to the table in Table 1 by viewing the table as ordered and setting the value of

K as 4, then the result is as shown in Table 3. Suppose that the table in Table 1 was sorted by the ages of

customers, from youngest to oldest. Table 3 indicates that older and younger customers have the similar

purchasing behavior.
The first generalized tuple in Table 3 comes from tuples 1 and 2 in Table 1, the second from tuples 3 and

4 in Table 1, the third from tuples 5, 6, 7 and the last from tuples 8, 9 and 10. The traditional AOI method

uses threshold values to control the generalization degree, but we use distance to control the degree of gen-

eralization. Because of this difference, the traditional AOI always presents a summary at a single level of

granularity, while our method is capable of summarizing non-overlapping subsets of tuples to different lev-

els of granularity. For example, the column ‘‘location of manufacturer’’ in Table 3 is generalized to two

different levels, where the first, the third and the fourth generalized tuples in Table 3 are at a higher level

than the second tuple.
As well, the two generalized tables must be interpreted differently. The table in Table 2 means that 50%

of data in the target class have the characteristics of (Light truck, Any, Middle, Low price), 20% of data

have (Light truck, Any, High, High price) and 30% of data (Car, Any, Middle, High price). The table in

Table 3 indicates that the first segment of data in the list corresponding to the youngest customers has

the characteristics of (SUV, Japan, 1601-2500, Economic), the second segment has (Van, Chevrolet, High,

Expensive), the third segment has (General Car, Germany, Middle, 25000-34999) and the last segment has

(SUV, Japan, Middle, Economic).
Table 3

The result after applying our algorithm

SO(i, r) Light Vehicle Model Location of Manufacturer Engine Displacement Price

1 SUV Japan 1601-2500 Economic

2 Van Chevrolet High Expensive

3 General Car Germany Middle 25000-34999

4 SUV Japan Middle Economic
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3. The Ordered AOI algorithm

To solve the stated problem, we propose the Ordered AOI algorithm. This algorithm partitions the data

into a set of consecutive segments, from each of which the characteristics are found. Partitioning should not

be done arbitrarily. Instead, we are looking for a partition satisfying two goals: (1) the data in the same
segment should be as similar as possible; (2) the characteristics between different segments should be as dif-

ferent as possible. To meet these two goals, the problem becomes how to minimize the intra-segment dis-

tance inside the same segments but at the same time maximize the inter-segment distance between successive

segments. Therefore, this paper defines two distance metrics to measure these two types of distances. We

use a weighted summation of them to measure which partition is the best one.

The inputs of the Ordered AOI algorithm include three parts: (1) an ordered list of data tuples; (2) the

concept tree for each attribute; and (3) the value of K. The output consists of K generalized tuples, where a

generalized tuple is the generalization of those data tuples in the same segment.
Since the Ordered AOI algorithm contains five phases, Section 3.1 gives an overview of the entire algo-

rithm. After that, we introduce theses five phases in order from Sections 3.2–3.6. Finally, Sections 3.7 and

3.8 give the time and space complexities of the algorithm, respectively.

3.1. An overview of the Ordered AOI algorithm

The first phase of the Ordered AOI algorithm computes the conceptual distances between every pair of

consecutive tuples for every attribute. The values of attribute r in the ith tuple and the (i+1)th tuple will
become the same if they climb high enough along the concept hierarchy for attribute r. Let us refer to

the number of steps climbed as the generalization height of tuple i for attribute r, denoted as F(i, r). Seman-

tically, F(i, r) denotes the distance of attribute r between tuples i and i+1. Our first phase computes F(i, r)

for all tuples i and all attributes r.

Based on F(i, r), the second phase computes E(i, j, r) for all i, j and r, which denotes the minimum number

of steps we need to climb up along the concept hierarchy of attribute r before the data from tuple i to tuple j

will have the same value. Semantically, E(i, j, r) denotes the distance of attribute r for the data from tuple i

to tuple j.
The third phase is to compute the intra-segment distance of a segment of tuples from tuple i to tuple j,

denoted as DI(i, j), for all i and j. DI(i, j) can be obtained by computing the weighted summation of E(i, j, r)

for all attributes r, since the former denotes the distance for all attributes while the latter denotes the dis-

tance for a single attribute.

In the fourth phase, we have two major jobs. The first job is to compute the inter-segment distance be-

tween two adjacent segments of tuples, denoted as DS(i, j,k), where the first segment is from tuple i to tuple

j while the second is from tuple j+1 to tuple k. To do so, we first give the definition of DS(i, j,k). After that,

we consider how to compute it in an easier way, and we show that it can be computed directly from DI(i, j),
which was obtained in the preceding phase.

Based on DI(i, j) and DS(i, j,k), the second job of the fourth phase is to determine the best partition

points for a given set of data tuples by using the dynamic programming method. One result obtained, called

D(i, j, s), tells us the distance of the optimum partitioning of the data from tuple i to the last tuple into s

segments subject to the constraint that the first segment is from tuple i to tuple j. Complementarily, another

result, called B(i, j, s), tells us the first partition point after tuple j that achieves the optimum distance of

D(i, j, s). At the end of the fourth phase, we can find the optimum distance by choosing the optimum

one from D(1, j,K) for all j.
Finally, our last phase is to compute all the partition points required to achieve the optimum distance,

denoted D(1, j*,K). These points are obtained by repetitively going backward from B(1, j*,K). After finding

all partition points, it is easy to derive the generalized tuples, and we report them as the output knowledge.
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3.2. The first phase

Recall that the first phase computes the conceptual distances between every pair of consecutive tuples for

every attribute. Let SI(i, r) denote the value of attribute r of data tuple i. A concept tree of height Lr is asso-

ciated with attribute r, meaning that the levels of the tree are from level 0 to level Lr and the root node is at
level 0. As with much previous research in AOI, we assume that all the leaves in a concept tree are at the

same level. In the beginning, the value SI(i, r) is at level Lr of the tree. Afterwards, it may climb up a certain

number of steps along the tree, and we refer to the number of steps climbed as the generalization height. Let

pr denote the level of the node after SI(i, r) has been generalized. Then, the generalization height of attri-

buter of tuple i equals to Lr�pr.
Any two successive values SI(i, r) and SI(i+1,r) can be generalized to the same value if they climb up

along the tree to the nearest common ancestor. Suppose their nearest common ancestor is at level pr. Then

the generalization height of attribute r between tuple i and tuple i+1 equals to Lr�pr, denoted as F(i, r). It
is easy to see that F(i, r) can be determined in time O(Lr) for given i and r, because we climb at most O(Lr)

steps in the tree. For n tuples and m attributes, the time is O(m·n·Lr).
In the following, we give the algorithm Comp-F to compute F(i, r) for all tuples and for all attributes.

Procedure: Comp-F

Begin
For i 1 to n�1 do //n, the number of tuples
For r 1 to m do //m, the number of attributes
Get pr by finding the nearest common ancestor of SI(i, r) and SIðiþ 1; rÞ
F(i, r)‹Lr�pr
End

End
End;

Example 1. The data table shown in Table 1 has four attributes, and their concept trees are shown in

Appendix A. We have L1=3, L2=3, L3=2 and L4=3. By applying the above algorithm, we get the result

shown in Table 4. Here, let us take a closer look at how the value of F(4,2) is computed. This entry is
determined by SI(4,2) and SI(5,2), which are Chevrolet and Volkswagen, respectively. By examining the

concept tree of attribute 2, we find that their nearest common ancestor is Any, which is 3 levels higher than

each of these two elementary values. Thus, we have the result that F(4,2)=3.
3.3. The second phase

The goal of this phase is to compute the generalization height of attribute r for a segment of consecutive

tuples from tuple i to tuple j, denoted as E(i, j, r). Similar to the definition in the foregoing section, we define

it as the number of steps that we must climb along the tree before all these tuples will have the same value.

To this end, we must compute the nearest common ancestor of SI(i, r), SI(i+1,r),. . .,SI(j, r) in the concept
tree of attribute r. Let pr be the level of this ancestor node in the tree. Then the generalization height E(i, j, r)

of attribute r of the data from tuple i to tuple j equals to Lr�pr.
In order to simplify the computation, we use the following lemma to compute E(i, j, r) from F(k, r), which

is already known from the preceding phase.

Lemma 1. Eði; j; rÞ ¼ maximum
i6 k6 j�1

ðF ðk; rÞÞ if i 6 j�1 and E(i, j, r)=0 if i= j.



Table 4

F(i, r) for the data in Table 1

F(i, r) 1 2 3 4

1 1 1 0 1

2 2 3 2 3

3 1 0 1 1

4 3 3 2 2

5 1 0 0 0

6 0 1 1 0

7 3 3 1 3

8 0 1 0 1

9 1 0 1 1
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Proof. We use induction to prove the lemma. The basis case is i+1= j. This case holds trivially because

E(i, j, r)=E(i, i+1,r)=F(i, r) by definition. Next, assume that the lemma is true for E(i,k, r) where k< j.

And we now consider the case of E(i, j, r). Our proof is based on the observation that, if the nearest common

ancestors are the same, then the generalization heights are also the same, and vise versa. So, let NCA(i, j, r)

denote the nearest common ancestor of the data from SI(i, r) to SI(j, r). Then, NCA(i, j�1,r) must be a cer-
tain node along the path from node SI(j�1,r) to the root node. Similarly, NCA(j�1,j, r) is also a certain
node on the same path. If NCA(i, j�1,r) is at a level higher than that of NCA(j�1,j, r), then NCA(i, j�1,r)
is an ancestor of NCA(j�1,j, r). Otherwise, NCA(j�1,j, r) becomes an ancestor of NCA(i, j�1,r). No matter
what case it is, the one in the higher level becomes NCA(i, j, r), for this node is not only an ancestor of the

data from SI(i, r) to SI(j�1, r) but also an ancestor of the data from SI(j�1,r) to SI(j, r). As a result, the

generalization height of the data from SI(i, r) to SI(j, r) equals to the maximum of that from SI(i, r) to

SI(j�1,r) and that from SI(j�1,r) to SI(j, r). By the induction basis and hypothesis, this implies that

E(i, j, r) is equal to the maximum of F(j�1,r) and maximum
i6 k6 j�2

fF ðk; rÞg.

Therefore, we have the conclusion that Eði; j; rÞ ¼ maximum
i6 k6 j�1

ðF ðk; rÞÞ. h

Example 2. For explanation, let us use the data in Table 1 to check how to compute E(4,8,4), where we

have SI(4,4)=45,600, SI(5,4)=25,100, SI(6,4)=30,500, SI(7,4)=32,000 and SI(8,4)= 22,300. By examin-
ing the concept tree of attribute 4, we see that the nearest common ancestor of the data from SI(4,4) to

SI(7,4) is node ‘‘High price’’. On the other hand, the nearest common ancestor of the data from SI(7,4)

to SI(8,4) is node ‘‘Any price’’. Since node ‘‘Any price’’ is an ancestor of node ‘‘High price’’, the general-

ization height of the data from SI(4,4) to SI(8,4) is equal to that from SI(7,4) to SI(8,4). That means,

E(4,8,4)=maxE(4,7,4), E(7,8,4)=E(7,8,4). According to the induction basis and hypothesis of Lemma

1, we have E(7,8,4)=max{3}=3 and E(4,7,4)=max{2,0,0}=2. Therefore, we have the result that

E(4,8,4)=max{2,0,0,3}=3.

Based on Lemma 1, an algorithm is given below to find all E(i, j, r) for all pairs of tuple positions and
attributes.
Procedure: Comp-E

Begin
For r 1 to m do //m, the number of attributes

For i 1 to n�1 do //n, the number of tuples



Table 5

E(i, j,1) for the dat

E(i, j,1) 1 2

1 0 1

2 0

3

4

5

6

7

8

9

10

E(i, j,3) 1 2

1 0 0

2 0

3

4

5

6

7

8

9

10
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Eði; i; rÞ  0

Eði; iþ 1; rÞ  F ði; rÞ
For j iþ 1 to n�1 do
a in T

3

2

2

0

3

2

2

0

If E(i, j, r)<F(j, r) Then
able

4

2

2

1

0

4

2

2

1

0

Eði; jþ 1; rÞ  F ðj; rÞ

Else
Eði; jþ 1; rÞ  Eði; j; rÞ

End
End

End

End;

Example 3. By applying the above algorithm to the data in Table 1 and the F(i, r) table in Table 4, we get

the result shown in Table 5.
3.4. The third phase

The third phase is to compute the intra-segment distance of a segment of tuples from tuple i to tuple j,
denoted as DI(i, j), for all i and j. Recall that DI(i, j) can be obtained by computing the weighted summation

of E(i, j, r) for all attributes r, since the former denotes the distances for all attributes while the latter denotes
1

5 6 7 8 9 10 E(i, j,2) 1 2 3 4 5 6 7 8 9 10

3 3 3 3 3 3 1 0 1 3 3 3 3 3 3 3 3

3 3 3 3 3 3 2 0 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 0 0 3 3 3 3 3 3

3 3 3 3 3 3 4 0 3 3 3 3 3 3

0 1 1 3 3 3 5 0 0 1 3 3 3

0 0 3 3 3 6 0 1 3 3 3

0 3 3 3 7 0 3 3 3

0 0 1 8 0 1 1

0 1 9 0 0

0 10 0

5 6 7 8 9 10 E(i, j,4) 1 2 3 4 5 6 7 8 9 10

2 2 2 2 2 2 1 0 1 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 0 3 3 3 3 3 3 3 3

2 2 2 2 2 2 3 0 1 2 2 2 3 3 3

2 2 2 2 2 2 4 0 2 2 2 3 3 3

0 0 1 1 1 1 5 0 0 0 3 3 3

0 1 1 1 1 6 0 0 3 3 3

0 1 1 1 7 0 3 3 3

0 0 1 8 0 1 1

0 1 9 0 1

0 10 0
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the distance for a particular attribute. Formally, the computation can be expressed by the following equa-

tion:
Table

DI(i, j)

DI(i, j)

1

2

3

4

5

6

7

8

9

10
DIði; jÞ ¼
Xm
r¼1

Eði; j; rÞ 	 vr;
where vr is a constant reflecting the relative importance of attribute r. Since this computation is easy, we
omit the corresponding algorithm. However, if we apply the above equation to compute the intra-segment

distances for the data in Table 1 and set all vr equal to 1, then we obtain the result shown in Table 6.
3.5. The fourth phase

In the fourth phase, we have two major jobs. The first job is to compute the inter-segment distance be-

tween two adjacent segments of tuples, and the second is to determine the best partition points for a given

set of data tuples by using a dynamic programming approach.

Let the inter-segment distance between two adjacent segments of tuples be denoted as DS(i, j,k), where

the first segment is from tuple i to tuple j and the second segment is from tuple j+1 to tuple k. Assume that

the data from tuple i to tuple j can be generalized into a generalized tuple P with m attribute values

P1,P2, . . .,Pm. For each value Pr, let LPr be its level in the concept tree of attribute r. Similarly, assume that
the data from tuple j+1 to tuple k can be generalized into a generalized tuple Q with attribute values
Q1,Q2, . . .,Qm and levels LQ1,LQ2, . . ., LQm. Further, assume that T denotes the generalized tuple pro-
duced from tuple i to tuple k, and that its values are T1,T2, . . .,Tm and their levels are LT1,LT2, . . .,LTm.
Obviously, P and Q are adjacent generalized tuples, and T denotes the generalization of P and Q until a

common ancestor is reached. The distance required to generalize P into T is
Pm

r¼1ðLPr � LT rÞ 	 vr. Simi-

larly, the distance required to generalize Q into T is
Pm

r¼1ðLQr � LT rÞ 	 vr. Summing both terms together,

we obtain the total distance to generalize tuple P as well as tuple Q into a single tuple T. Therefore,

DS(i, j,k) can be written as
Pm

r¼1ðLPr � LT rÞ 	 vr þ ðLQr � LT rÞ 	 vr. Since the following lemma shows thatPm
r¼1ðLPr � LT rÞ 	 vr ¼ DIði; kÞ � DIði; jÞ, the formula of DS(i, j, k) can be simplified as
DSði; j; kÞ ¼ DIði; kÞ � DIði; jÞ þ DIði; kÞ � DIðjþ 1; kÞ: ð1Þ
6

for the data in Table 1

1 2 3 4 5 6 7 8 9 10

0 3 10 10 11 11 11 11 11 11

0 10 10 11 11 11 11 11 11

0 3 10 10 10 11 11 11

0 10 10 10 11 11 11

0 1 3 10 10 10

0 2 10 10 10

0 10 10 10

0 2 4

0 3

0
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Lemma 2.
Pm

r¼1ðLPr � LT rÞ 	 vr ¼ DIði; kÞ � DIði; jÞ.

Proof. We use the following derivation for the proof.
Xm

r¼1
ðLPr � LT rÞ 	 vr ¼

Xm
r¼1
ðLr � LT rÞ 	 vr � ðLr � LPrÞ 	 vr ¼

Xm

r¼1
Eði; k; rÞ 	 vr � Eði; j; rÞ 	 vr

¼
Xm

r¼1
Eði; k; rÞ 	 vr �

Xm

r¼1
Eði; j; rÞ 	 vr ¼ DIði; kÞ � DIði; jÞ �
Based on Eq. (1), it is easy to compute the inter-segment distance between any two successive segments of

data tuples. For conciseness, we omit the algorithm.

Suppose all n input tuples have been partitioned into K consecutive segments. Then we will have K intra-

segment distances and (K�1) inter-segment distances. Thus, we define the total distance as

a	 ðthe sum of all intra� segment distancesÞ � b	 ðthe sum of all inter� segment distancesÞ:
Here, we use a minus operator between these two distances because we wish the former as small as possible
but the latter as large as possible. Our goal is then to find a partition of tuples such that the total distance

will be minimized.

Let D(i, j, s) denote the minimum total distance of the data from tuple i to the last tuple if we partition it

into s segments and the first segment is from tuple i to tuple j. Complementarily, B(i, j, s) denotes the first

partition point after tuple j that achieves the optimum distance of D(i, j, s). If s=1, we have the following

base relation.
Dði; j; sÞ ¼ a	 DIði; nÞ; if j ¼ n;

Dði; j; sÞ ¼ undefined if j 6¼ n;

Bði; j; sÞ ¼ undefined:
In case that s=2 and n> j, the recursive relation becomes as follows:
Dði; j; sÞ ¼ a	 DIði; jÞ � b	 DSði; j; nÞ þ a	 DIðjþ 1; nÞ

¼ a	 DIði; jÞ � b	 DSði; j; nÞ þ Dðjþ 1; n; 1Þ;

Bði; j; sÞ ¼ undefined:
For a general s, where 2< s6K, we have the following recursive formula if n� j+1P s.
Dði; j; sÞ ¼ a	 DIði; jÞ þ minimum
jþ16 k6 n�sþ2

f�b	 DSði; j; kÞ þ Dðjþ 1; k; s� 1Þg;

Bði; j; sÞ ¼ a value of k that gave the minimum in computing Dði; j; sÞ
In the above equation, j is the first partition point, which is specified beforehand, and k is the second par-

tition point, which needs to be selected. Splitting with these two points will partition the data into three

parts: the first segment is from tuple i to tuple j, the second segment is from tuple j+1 to tuple k, and
the remaining s�2 segments afterwards. For the first segment, there will be an intra-segment distance of
DI(i, j). Between the first and the second segments, there will be an inter-segment distance of DS(i, j,k). Fi-

nally, for the data from the second segment until the last segment, the definition should ensure that its dis-

tance will be optimal. So, we use a cost term of D(j+1,k, s�1). Since we are not sure which value of k gives
the optimal partitioning point, we find it by trying all possible values in the range from j+1 to n� s+2. If
there is a tie, we choose the smallest such k. Finally, the optimal distance can be determined as

minimum
26 j6 n�Kþ1

fDð1; j;KÞg.



Table 7

D(i, j, s) matrix for the data in Table 1

s=1 1 2 3 4 5 6 7 8 9 10 s=2 1 2 3 4 5 6 7 8 9 10

1 1

2 2

3 3 �33 �23 12 12 �18 �18 �33
4 11 4 �38 12 12 �18 �18 �33
5 10 5 �30 �25 �45 �15 �30
6 10 6 �30 �50 �15 �30
7 10 7 �60 �15 �30
8 4 8 �17 �22
9 3 9 �24
10 0 10

s=3 1 2 3 4 5 6 7 8 9 10 s=4 1 2 3 4 5 6 7 8 9 10

1 1 �137 �151 �143 �113 �112 �130 �73
2 �113 �68 �71 �75 �93 �50 �57 2 �166 �143 �113 �112 �130 �73
3 �77 �98 �72 �90 �55 �57 3 �137 �140 �109 �127 �78
4 �113 �72 �90 �55 �57 4 �155 �109 �127 �78
5 �70 �79 �82 �54 5 �103 �116 �105
6 �76 �87 �54 6 �113 �110
7 �97 �54 7 �120
8 �40 8

9 9

10 10
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Based on the above equations, we give the following algorithm to perform the required computations.

Procedure: MGK(DI,DS,a,b,K) // Mining Generalized Knowledge

Begin
Table

B(i, j,s

s=3

1

2

3

4

5

6

7

8

9

10
s 1 //case 1: s=1

j n
For i 1þ K � s to n� s+1 do
Dði; j; sÞ  a	 DIði; jÞ
End

s 2 //case 2: s=2

k  n
For i 1þ K � s to n� s+1 do
For j i to n� s+1 do
8

) matrix for

1 2

3

D(i, j, s)=a·DI(i, j)�b·DS(i, j,k)+D(j+1,k, s�1)

End

End

For s 3 to K do //case 3: 2< s6K

For i 1þ K � s to n� s+1 do

For j i to n� s+1 do
the d

3

4

9

Dði; j; sÞ ¼ a	 DIði; jÞ þ minimum
jþ16 k6 n�sþ2

f�b	 DSði; j; kÞ þ Dðjþ 1; k; s� 1Þg
B(i, j, s)=a value of k that gave the minimum in computing D(i, j, s)
End
End

End

End;

Example 4. Let us set a=1, b=4 and K=4, and consider the data of Table 1 again. By applying the above

algorithm, we can find the optimal distance matrix D(i, j, s), as shown in Table 7. Meanwhile, the partition

position matrix B(i, j, s) is also obtained, as shown in Table 8.
ata in Table 1

4 5 6 7 8 9 10 s=4 1 2 3 4 5 6 7 8 9 10

1 2 4 4 6 7 7 8

7 7 7 8 9 2 4 4 6 7 7 8

7 7 7 8 9 3 4 6 7 7 8

7 7 7 8 9 4 6 7 7 8

9 7 8 9 5 7 7 8

7 8 9 6 7 8

8 9 7 8

9 8

9

10
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3.6. The fifth phase

Finally, the last phase computes a set of partition points that achieves the optimum distance, denoted as

D(1,j*,K), and outputs the generalized knowledge. We go repetitively backward from B(1,j*, K) and derive

the generalized tuples at the same time. Let GenSO(i, j) be the operation that outputs the generalized tuple
summarized from tuple i to tuple j along with the count. The algorithm for outputting the knowledge is

given below.
Procedure: CGK (D,B) // Create Generalized Knowledge

Begin
//case 1: find the first and second partition points and the generalized tuples

GenSO(1,j*)

j Bð1; j�;KÞ
i j� þ 1
GenSO(i, j)
//case 2: find the other partition points and the generalized tuples

s K � 1
While s>2 Do

k  Bði; j; sÞ
GenSO(j+1,k)

i jþ 1
j k
s s� 1
End

GenSO(j+1,n)

End;

Example 5. In the above example, the optimal distance is achieved when D(1,2,4)=�151, where we have
B(1,2,4)=4. From this we know that the first segment is from tuple 1 to tuple 2 and the second segment
from tuple 3 to tuple 4. After that, we set i=3, j=4 and s=3, and executing the while loop finds the result

B(3,4,3)=7, which indicates that the third segment is from tuple 5 to tuple 7. Next, we exit the while loop

because of s=2. Finally, the last step finds the fourth segment as from tuple 8 to tuple 10.
3.7. The time complexity

Let n denote the number of tuples in the input data, m the number of attributes, K the number of par-

titioned segments and h the maximum height of any concept tree. We assume that m<n and h<n. Then the

following are the time complexity of each phase and the total time complexity.

1. The complexity of phase 1, i.e., computing F(i, r) for 16 i 6 n�1 and 16 r6m, can be computed as
follows:
ðn� 1Þ 	 m	 h 2 hðn	 m	 hÞ:

2. The complexity of phase 2, i.e., computing E(i, j, r) for 16 i6 j6 n and 16 r6m, can be computed as
follows:
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Xm

r¼1

Xn�1

i¼1
ðn� 1� i� 1þ 1Þ ¼ m	 n2 � 3n

2
þ 1

� �
2 hðn2 	 mÞ:
3. The complexity of phase 3, i.e., computing DI(i, j) for 16 i< j6 n, can be computed as follows:
Xn

i¼1

Xn

j¼i
m 2 hðn2 	 mÞ:
4. The complexity of the first job in phase 4, i.e., computing DS(i, j,k) for 16 i6 j<k6 n, can be computed

as follows:
Xn�1

i¼1

Xn�1

j¼i

Xn

k¼jþ1
1 2 hðn3Þ:
5. The complexity of the second job in phase 4, i.e., computing D(i, j, s) for 16 i6 j6 n and 16 s6K, can

be computed as follows:
XK

s¼1

Xn

i¼1

Xn

j¼i
n 2 hðn3 	 KÞ:
6. The complexity of phase 5, i.e., determining how to partition the data, is h(K) since we go backward
from B(1,j*,K) in K steps to find all partition points. After finding all partition points, the time to pro-

duce the K generalized tuples can be done in time h(n·m·h).
7. Summing all the above time complexities together, we have the final time complexity as h(n3·K).

The final time complexity h(n3·K) is much better than the naı̈ve time complexity

hðCn
K 	 n	 m	 hÞ ¼ hðnKþ1 	 m	 hÞ, which is achieved by trying all possible partitions and doing gener-

alizations for each partition. However, it is significantly worse than AOI�s h(n·m· h) complexity.

3.8. The space complexity

In this section, we will analyze how much space is required to store all the data structures used in the
algorithm. In the following, we list the space requirements for each phase.


 Phase 1 uses table F(i, r), where i is from 1 to n�1 and r is from 1 to m. Thus, the space required is

h(n· m).

 Phase 2 uses table E(i, j, r), where 16 i6 j6 n and 16 r6m. Thus, the required space is h(n2· m).

 Phase 3 uses table DI(i, j), where 16 i< j6 n. Thus, the space required is h(n2).

 Phase 4 uses table DS(i, j,k), where 16 i6 j<k6 n. Thus, the space required is h(n3).

 Phase 4 uses two other tables D (i, j, s) and B(i, j, s), where 16 i6 j6 n and 16 s6K. Thus, the space
required is h(n2·K).


 The total space requirements are h(n3).

We can reduce the above space complexity to hðn2 	maxfK;mgÞ. The table DS occupies the most space,
but each DS(i, j,k) value equals to DI(i,k)�DI(i, j)+DI(i,k)�DI(j+1,k). Instead of actually creating this
table, when we need the value of DS(i, j,k), we can directly compute this value based on this formula. This

approach reduces the space required for storing the table to hðn2 	maxfK;mgÞ.
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4. Extensions to the Ordered AOI Algorithm

In this section, we will discuss several difficulties that we may encounter when using the Ordered AOI

algorithm to mine real data. For each of these difficulties, a solution is proposed as well. After including

these extensions, the resulting algorithm is called the Extended Ordered AOI algorithm (the EOAOI algo-
rithm for short). The following are the difficulties that we may encounter.

1. Our method uses a small number of generalized tuples to represent a large number of ordered data.

Therefore, if a generalized tuple is formed by grouping only a few tuples, we may feel that the basis

of this generalized tuple is inadequate because it only represents a small group of data; this results in

a generalized tuple of weak representation. In view of this, we add another constraint that the

number of tuples summarized into a generalized tuple must be no less than lb and no greater than

ub.
2. A key element in the AOI method is concept trees. However, when we try to apply our algorithm to real

data, especially numerical data, we found that the concept tree cannot adequately deal with numerical

data. For example, let us build a concept tree for the score ranging from 0 to 100. Suppose that the root

[0,100] has two children at the first level, where the left son is [0,50) and the right son is [50,100]. Then, if

we have two numerical data 49 and 51 in the same group, we must generalize them into the most top

level [0,100] of the tree, though their difference is only 2. To remedy this problem, we propose using

a directed acyclic graph structure to solve this problem.

3. In practice, noise and outliers commonly occur in datasets. Without dealing with these dirty data, the
generalization result may be distorted because of these extreme values. Therefore, we propose a method

to preprocess the data so that the noise can be removed.

4. The Ordered AOI algorithm has a high time complexity of h (n3), which makes it impractical for large
data sets. We propose a preprocessing method that can reduce the data size and thus improve the per-

formance.

In the following three subsections, we will describe the proposed extensions.
4.1. Size constraint

We extend the ordered AOI algorithm by adding the constraint that the number of tuples summarized
into a generalized tuple must be no less than lb and no greater than ub. Basically, we employ a similar pro-

cedure like the original algorithm to solve the new problem. The main differences lie in how we define the

table D and execute phase 4.

Let D(i, j, s) denote the minimum total distance of the data from tuple i to the last tuple if we partition it

into s segments and the first segment is from tuple i to tuple j. Because of the newly added constraint, we

require lb6 j� i+16 ub. Complementarily, B(i, j, s) denotes the first partition point after tuple j that
achieves the optimum distance of D(i, j, s), where lb6 j� i+16 ub. If s=1, we have the following base rela-
tion:
Dði; j; sÞ ¼ a	 DIði; nÞ if j ¼ n and lb 6 n� iþ 16 ub;

Dði; j; sÞ ¼ undefined if j 6¼ n;

Bði; j; sÞ ¼ undefined:
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In the case that s=2, lb6 j� i+16 ub, lb6 n� j6 ub and n> j, the recursive relation is as follows:

Dði; j; sÞ ¼ a	 DIði; jÞ � b	 DSði; j; nÞ þ a	 DIðjþ 1; nÞ

¼ a	 DIði; jÞ � b	 DSði; j; nÞ þ Dðjþ 1; n; 1Þ;
Bði; j; sÞ ¼ undefined:
For a general s, where 2< s6K, we have the following recursive formula if n� j+1P s, lb6 j� i+16 ub,
lb· (s�1)6 n� j6 ub· (s�1):
Dði; j; sÞ ¼ a	 DIði; jÞ þ minimum
jþlb6 k6 minfn�ðsþ2Þ	lb;jþubg

f�b	 DSði; j; kÞ þ Dðjþ 1; k; s� 1Þg;

Bði; j; sÞ ¼ a value of k that gave the minimum in computing Dði; j; sÞ:
Based on the above formulas, the MGK algorithm in Section 3.5 can be modified to give the extended

MGK algorithm. To save space, we omit the details.

Sometimes we may only have to set the lower bound lb but leave the upper bound ub unlimited. Our

method can easily handle this special case just by setting ub=n� (K�1)· lb.

4.2. Common-child tree

As mentioned, using the concept tree to represent numerical data may face a serious situation when the

data in the same group fall into the boundary of two adjacent regions. To remedy, we slightly modify the

original concept tree as a new structure, called the common-child tree. The common-child tree is similar

to the concept tree. It still has multiple levels of nodes, and each node belongs to a certain level. The differ-

ence lies in that in a common-child tree, if node A is on the left adjacent to node B, then (1) all the child nodes

of node A must be on the left of those of node B, and (2) the rightmost child of node A and the leftmost child
of node B can be the same node. But in a concept tree two nodes at level h�1 are not allowed to have any
common child at level h. Fig. 1 shows an example of a common-child tree for the score ranging from 0 to 100.

When we use the common-child tree rather than the concept tree, the original algorithm should be mod-

ified accordingly. In this new structure, the most important difference lies in that there are multiple paths

that a leaf node can go to the root node, while in the original concept tree there is only one path that we can

go from a leaf node to the root node. Because of this difference, phase 1 of the original algorithm is no

longer appropriate, because Lemma 1 no longer holds and this means we cannot compute the E(i, j, r) table

from the F(i, r) table. So, our problem becomes finding how we can compute the E(i, j, r) table.
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Fig. 1. The common-child tree for the score ranging from 0 to 100.
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Let us consider the common-child tree of attribute r. First, we traverse all the paths from the root node

to every leaf node in the tree. Each time we reach a leaf node, we store the information including the nodes

along the path as well as their levels into the node. After the traversal is over and duplicate information is

removed, each leaf node will record all its ancestor nodes along with their levels. Let node l(w) denote the

leaf node to which the value of attribute r of tuple w belongs. Let A(l(w)) denote the set of ancestor nodes of
node l(w), and let level(u) denotes the level of node u for each node u in A(l(w)). Then the nearest common

ancestor z of nodes l(w) for i6w6 j can be determined as follows:
Ui;j ¼ fu exist in all AðlðwÞÞ for i6w6 jg;
levelðzÞ ¼ min

u2Ui;j
flevelðuÞg:
A quicker way to determine the common ancestor is to sort all elements in A(l(w)) into a non-ascending
sequence first by their levels and then by their names. Then we can find the common ancestor z by sequen-

tially scanning and comparing all these sequences until the first common element appears. Having found z,

the value of E(i, j, r) is determined as Lr� level(z).
In fact, E(i, j, r) can be computed from E(i, j�1,r). The relation Ui, j=Ui, j� 1\A(l(j)) indicates that if we

already know Ui, j� 1, then Ui, j can be determined by merging set Ui, j� 1 with A(l(j)). After the merge, the

first one appearing in Ui, j is the nearest common ancestor with the minimum level. Therefore, we use the

following procedure to compute the E(i, j, r) table.

For i 1 to n�1 Do
Ui, i=A(l(i))

For j iþ 1 to n Do

Ui, j=Ui, j� 1\A(l(j))
z=the first element in Ui, j
E(i, j, r)=Lr� level(z)

End

End

After determining the E(i, j, r) table, the remaining parts of the algorithm are not influenced by the com-

mon-child tree, except for the operation GenSO(i, j) used in the CGK algorithm in Section 3.6. This oper-

ation finds the generalized tuple for the data from tuple i to tuple j. This can be done by finding their nearest

common ancestors for all attributes. We apply the above method to do so.
4.3. Data preprocessing

In this section, we will discuss how to preprocess the data so that two aims can be achieved: (1) noise can

be removed from the data, and (2) the data size can be reduced and the performance can be improved. If no

preprocessing is used, we may face two difficulties.


 If there exist some tuples in a group which do not comply with the general behavior of the data in that

group, the generalization will yield uninteresting results, because the tuple summarized from that group

will be too general to be meaningful. For example, if we are told that the generalized tuple has the value

‘‘ANY’’ in every column, this information seems no value for us.


 The analysis in Section 3.7 shows a time complexity of h(n3) for our algorithm but the traditional AOI
algorithms only requires time h(n·m·h). This suggests that our algorithm is not suitable for dealing

with large databases.
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Since the aim of our method is to find how the characteristics change along the dimension according to

which we sort the data, what is important is the trend along this dimension rather than every single detail.

On the other hand, when the data have noise, the generalization process may collapse if we really con-

sider every single detail. In view of these two concerns, we use the following data reduction method to

preprocess the data, in hope that they can improve the efficiency without losing the important trend

of the data.
We reduce the number of tuples to 1/R of the original number, and use representatives to represent the

original data. To this end, we first partition the data list into Øn Røconsecutive segments, each of which has
R tuples, except for the last one. Then, we use a representative tuple to represent each segment of data. We

choose the representative value for different types of attributes as follows.


 If the attribute is numerical, we use the mean value of these R tuples as the representative value. If the

mean is not itself a legal value, then the median would need to be used instead.


 If the attribute is not numerical but it is ordered, we use the median of these R tuples as the represent-
ative value.


 If the attribute is unordered, we use the mode of these R tuples as the representative value.
5. Performance evaluations

In this section, we perform a simulation study to empirically evaluate the performance of the proposed
method. The EOAOI algorithm is implemented in the Visual Basic 6.0 language and tested on a PC with a

P4 2.4G processor and 1024MB main memory under the Windows 2000 operating system. Note that the

algorithm implemented includes all the extensions mentioned in Section 4.

Since the AOI method has a much better time complexity than the EOAOI algorithm, the objective of

this simulation study is not to compare the run times of the two algorithms, but it is instead to identify

the maximum size of data set that the EOAOI algorithm can process in a reasonable time. Three factors

are considered in the study: (1) the number of data records, (2) the size of R, and (3) the relative ratio

between ub and lb. For each factor, we study how the run time varies as we change the value of the fac-
tor. After this study, the next experiment is to study whether or not the preprocessing step is worth per-

forming. This evaluation is performed from the perspective of the output quality. What we are interested

is if this preprocessing can help us to remove the noise data and hence improve the quality of the gen-

eralization. We compare the output of our algorithm for the following cases: (1) R=1, (2) R=2, (3)

R=10, and (4) R=50.

In the following, we first explain how the test data are generated and how the parameters are set. Then

we discuss the two experiments mentioned above, where the first is concerned with run time and the second

is concerned with the quality of the output of the algorithm.
5.1. Data generation

To study the performance of the proposed algorithm, we randomly generate the synthetic data sets for

the student streaming exams. We assume that there are six subjects that the students need to be tested, and

that the sum of the scores in these six subjects is used to rank the students, where the score si of subject i is

ranged from 0 to 100, where 16 i6 6. We assume that the score of each subject complies with a normal

distribution, and Table 9 shows the mean and the standard deviation of each subject. The six pairs of values

shown in Table 9 are borrowed from the public data reported by The Ministry of Education (MOE), Tai-
wan in year 2003, which holds nationwide streaming exams every year.



Table 9

The mean and the standard deviation of each subject

Subjects s1 s2 s3 s4 s5 s6

Mean 50 43 32 46 36 57

Standard deviation 16 23 21 24 20 22
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We use the following steps to generate a synthetic data tuple for each simulated student. First, we ran-

domly draw a real number x in [0,1] to denote the overall performance of this student. Then for each sub-

ject, say subject i, we randomly draw a real number yi in [0,1] to denote how this student performs on

subject i. Let ai denote the accumulated percentage of scores of subject i that are no better than that of this

student. Then ai is determined as ai=w·x+(1�w)·yi, where w is a given constant in [0,1]. Throughout the
experiments, we assume that w=0.6. Finally, based on ai and the mean and the standard deviation of sub-

ject i we can determine the score si of this student.

We use the tree in Fig. 1 as the common-child tree for each attribute. We assume that all attributes are of
equal importance, and we set a=1 and b=100. Let N denote the number of tuples and let r denote the con-
straint on the ratio of ub/lb. Then, we define ub as ðN=KÞ 	

ffiffi
r
p

and lb as ðN=KÞ=
ffiffi
r
p
.

5.2. Run time

This section compares the run time for two algorithms, i.e., the AOI algorithm and the EOAOI algo-

rithm. First, we evaluate the size of data set that our algorithm can process in a reasonable time. For

the EOAOI algorithm, we set R=1 and fix the ratio of ub/lb as 4, where R=1 means that no preprocessing
is done. Besides, our program is run by setting three different values of K, i.e., K=10, K=15 and K=20. As

for the AOI algorithm, we build a concept tree for the score by repeatedly partitioning the intervals into

two equal-width subintervals until the depth of the tree is five. When running the AOI, we assume that

all data tuples will be generalized to the top level. The simulation is carried out by varying the number

of tuples, denoted as N, from 500 to 2500. The results are shown in Fig. 2. Obviously, the AOI method

is faster than the EOAOI algorithm. However, we find that the EOAOI algorithm can process several thou-
Fig. 2. Run time vs. data size.
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sands data tuples in a few seconds. This result indicates that when the sizes of data sets are not too large, the

EOAOI algorithm would be capable of solving them.

Next, we will study how the number of generalized tuples influences the run time of the EOAOI algo-

rithm. To this end, we set R=1, N=2500 and fix the ratio of ub/lb as 4. Then K was varied from 5 to

25. Since the AOI method does not use this parameter, we do not include the AOI method in this test.
The results are shown in Fig. 3. From this figure, we find that the run time increases as the size of K gets

larger. But a problem arising immediately in the figure is why the run time increases sharply when the value

of K is larger than 25. After a careful examination, we found that it is not resulted from the algorithm itself.

But it is because, when K is large, the memory space is not enough to keep the stored tables. Thus, the oper-

ating system has to swap the tables between the main memory and the disk to keep the program executable

in a limited space.

Finally, we will study how the ratio between ub and lb influences the run time of the algorithm. To do so,

we set R=1, N=2500 and K=10. The value of ub/lb was varied from 1.5 to 6. The results are shown in Fig.
4. From this figure, we find that the run time increases as the ratio gets larger. This result indicates that

adding the constraint on the ratio of ub/lb brings about two advantages. First, it can improve the quality

of the generalization, because it ensures that every generalized tuple is derived from enough data. Second, it

reduces the run time.
Fig. 3. Run time vs. the number of generalized tuples.

Fig. 4. Run time vs. the ratio of ub and lb.
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5.3. The size of the smoothing window

The above section shows how the run time changes as we change the values of parameters. In this sec-

tion, we show what generalized results will be produced when we varied the size R of the smoothing win-
Table 10

The output for: (a) R=1; (b) R=2; (c) R=10 and (d) R=50

s1 s2 s3 s4 s5 s6 count

Panel (a)

48–100 ANY ANY 48–100 ANY ANY 158

48–100 ANY ANY ANY 24–75 ANY 100

ANY ANY 24–75 ANY 24–75 ANY 399

24–75 24–75 24–75 24–75 24–75 48–100 100

24–75 24–75 ANY 24–75 ANY ANY 399

36–63 24–75 0–51 24–75 24–51 24–75 100

24–75 ANY 0–51 ANY 0–51 24–75 399

24–75 0–51 0–51 ANY 0–51 36–63 100

ANY 0–51 0–51 ANY 0–51 ANY 399

0–51 0–51 0–51 0–51 0–51 ANY 346

Panel (b)

48–100 48–100 24–75 48–100 ANY 48–100 185

48–75 24–75 24–75 48–75 36–63 48–100 50

24–75 24–75 24–51 24–75 24–75 48–100 199

36–63 36–63 24–51 36–63 24–51 48–75 50

36–63 24–75 0–51 24–75 24–51 48–75 199

36–63 24–51 12–39 24–75 24–51 24–75 50

24–75 0–51 0–51 ANY 0–51 24–75 199

36–51 0–51 0–51 0–51 12–39 36–63 50

24–51 0–51 0–51 0–51 0–51 24–75 199

0–51 0–51 0–27 0–51 0–51 0–51 69

Panel (c)

60–75 48–100 48–63 48–100 48–75 72–87 10

48–75 48–75 36–63 48–75 36–63 48–100 40

48–63 48–57 36–45 54–63 42–51 60–75 10

48–63 42–57 30–45 36–63 36–51 48–75 39

48–57 42–51 30–39 42–57 36–45 54–63 10

42–57 36–51 24–39 36–51 30–45 48–63 39

42–51 30–45 24–33 36–51 24–39 48–57 10

36–51 24–51 18–33 30–45 24–39 42–57 39

36–45 24–39 18–27 30–39 18–33 36–51 13

24–51 0–51 0–27 0–51 0–51 24–51 40

Panel (d)

60–69 48–75 42–57 60–75 48–63 60–87 6

54–63 57–60 42–51 54–63 45–48 66–75 2

54–63 48–57 36–45 48–63 42–51 60–69 7

54–57 48–51 36–39 51–54 36–45 63–66 2

51–54 42–51 30–39 42–57 36–45 54–63 7

48–51 39–42 30–33 45–48 30–39 57–60 2

42–51 36–45 24–33 42–45 24–39 48–57 7

45–48 36–39 24–33 36–45 27–30 48–57 2

36–51 24–39 18–27 30–39 24–33 42–51 7

30–45 12–39 6–21 12–39 12–27 30–45 8
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dow. In this test, we output the generalized results for R=1, 2, 10, and 50. The results are shown in Table

10(a)–(d), respectively.

From these four output results, we find that the preprocessing step is critical for the success of the pro-

posed algorithm. Without preprocessing (Table 10(a)), noise in the data may severely bias the generalized

results so that many ANY values appear in the output. This makes the output uninteresting for the users. If
the preprocessing step is performed, the output shows the trend in the data. However, we should not use a

very large value for R when preprocessing the data. For example, let us observe the first tuple and the last

tuple in Table 10(d), where R=50. We find that those scores which are too high are excluded from the score

range in the first tuple. Similarly, those scores which are too low are also excluded from the score range in

the last tuple.
6. Conclusion

Since the current AOI-based methods can only find generalized knowledge from relational data and

since ordered data occur frequently in practice, we considered the possibility of finding generalized knowl-

edge from an ordered list of data by modifying the AOI method. In the paper, we proposed a dynamic-

programming based algorithm, with which we can discover a sequence of K generalized tuples describing
the characteristics of different segments of data along the list. The time complexity of the algorithm is

h(n3·K).
In addition, we discussed how to deal with four potential problems that may be encountered when apply-

ing the proposed algorithm to real data sets. To remedy these four problems, three extensions of the algo-

rithm were proposed, including (1) adding a constraint on the ratio between ub and lb, (2) constructing

common-child trees for the attributes other than concept trees, and (3) preprocessing the data.

In the simulation, we applied the extended algorithm to the synthetic data sets. From the experimental

results, we found that the extended algorithm running on a typical PC can process thousands of tuples in
few seconds. Thus, our algorithm can be applied in many real data sets which are not too large. Further-

more, our simulation also shows that the preprocessing step not only improves the output quality but also

reduces the data size. This finding indicates that our algorithm can deal with a large data set if the data set

can be preprocessed properly.

Some possible future research directions for this research are as follows.

1. As given, the proposed algorithm is not suitable for very large datasets, such as commonly occur in data

mining. A significant limitation of our approach is that the time complexity is h(n3·K) while standard
AOI is h(n). Thus, future research could attempt to propose improved algorithms with sufficient effi-
ciency to discover generalized knowledge in very large ordered data sets.

2. Several extensions of AOI have been proposed since its introduction in 1990. For ordered data, we could

consider variations such as associating multiple concept trees with a single attribute, using domain gen-

eralization graphs rather than concept trees (Hamilton et al., 1996), using fuzzy concept trees rather than

crisp concept trees and using rough set theory to further remove redundant attributes (Hu and Cercone,

1996).

3. In addition, we may consider the extension of how we can apply the AOI technique to induce knowledge
from types of data other than sets or lists, say from graph data, acyclic graph data or tree data. Addi-

tionally, we may apply the AOI technique to data of mixed types or a universal type.

4. Instead of generalizing the data only based on a single ordering, another possible extension is to do the

generalization based on multiple orderings, because multi-attribute data can support the definition of

different orderings for different attributes.
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5. An important contribution of this paper is that we define the distance between generalized tuples, based

on which optimization algorithms can be developed. This new way of applying AOI extends the appli-

cability of the AOI techniques because AOI can be used to search for optimum solutions to optimization

problems. In the future, researchers could attempt to define other distance measures and apply AOI to

solve other optimization problems.
6. To support decision making a decision maker must gather information by repeatedly analyzing the data,

each time from a different perspective. During this iterative process, the environment may be constantly

changing. Therefore, running our algorithm from the scratch every time the environment changes would

be time consuming. In view of this weakness, future research could attempt to design incremental algo-

rithms that produce generalized knowledge by starting from the previous result.
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Appendix A

See Figs. A.1–A.4.
Fig. A.1. The concept tree for attribute ‘‘Location of Manufacturer’’.



Fig. A.2. The concept tree for attribute ‘‘Light Vehicle Model’’.

Fig. A.3. The concept tree for attribute ‘‘Engine Displacement’’.

Fig. A.4. The concept tree for attribute ‘‘Price’’.
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